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Modeling of Conductor-Loaded Resonators
and Filters in Rectangular Enclosures

Chi Wang, Hui-Wen YaoSenior Member IEEEand Kawthar A. ZakiFellow, IEEE

Abstract—Full-wave modeling of conductor-loaded resonators
in rectangular enclosures and the associated coupling structure is
presented. The modeling yields generalized scattering matrices
of the cylindrical conductor-loaded resonators in rectangular
waveguides. By applying short and open conditions and cascading
procedure, resonant frequencies, field distributions of the res-
onator, and coupling coefficients between two cavities through
an iris are obtained. The computed results are compared with
the measured data and both are in good agreement. A four-
and an eight-pole dual-mode elliptic-function filter were designed,
constructed, and tested. Measured frequency responses of the
filters verify the theory.

I. INTRODUCTION

IGH-PERFORMANCE small-size microwave resonators

and filters are finding increasing applications in modern
communication systems. Dual-mode technique and dielectric-
loaded resonators have been widely used in many applications
[1]-[4]. Recently, a new type of resonator (i.e., dual-mode
conductor-loaded resonator) was introduced [14], [15]. The
resonator has much lower cost, weight, and better spurious per-
formance than the dielectric-loaded resonators. The unloaded
@ of the new-type resonator is less than that of the dielectric-
loaded resonator, but is much higher than that of the coaxtd- 1 Configuration of ageperalized conductor-loaded resonator with sup-
and combline resonators. The new type of resonators and filt&?4 " @ rectangular waveguide.
has potential in many practical applications, such as personal-
communication system (PCS) and personal-communicatiipiegrals in the inner products of the mode-matching method
network (PCN) base-station filters. As for the case of the cosan not be directly analytically evaluated. By expanding the
ventional cylindrical dual-mode filter structure, it is difficult tofields in the rectangular waveguide into cylindrical wave
support the resonator in the cavity when the number of cavitifihctions using the Bessel-Fourier series, the integration for
is more than two. The proposed structure, shown in Fig. 1 (i.each term of the series can be obtained analytically [11]-[13].
conductor-loaded resonator with dielectric support mounted Several kinds of cylindrical objects in rectangular waveguide
a rectangular enclosure), can avoid the above difficulty ahgve been successfully solved. Reliable and accurate results
increase the mechanical stability of the resonator [10].  were obtained by the method. Furthermore, the generalized

Full-wave modeling of cylindrical objects in a rectangulagcattering matrices of the rectangular waveguide to cylindrical

waveguide is not an easy task because the problem i”V0|;?§tem discontinuity can be treated as a key building block so
two kinds of coordinate systems. Although purely numericghat more complicated problems can be solved.
methods such as the finite-element method can be appliegy this paper, the discontinuity in the cylindrical region
to solve the problem, the accuracy and the efficiency @fe  the conductor-loaded resonator), is modeled by the
the methods usually make them not suitable for the narroygia mode-matching method and the approach using the
ba_ndwidth f'ilter design. The accuracy of the results by ”E’esseI—Fourier series as [11]-[13] is used to solve the
point-matching method [8] and the moment method [9] i§yjingrical region to rectangular-waveguide discontinuity. As
also not as good as the mode-matching method. However, fig.qit, the generalized scattering matrices of the conductor-
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Fig. 2. (a) Configuration of a conductor-loaded rectangular cavity. (b) Net- )
work representation of the cavity. Fig. 3. (a) Coupling structure between two conductor-loaded rectangular

cavities through an iris. (b) Network representation of the structure.

The computed results are compared with the measured data. . - L . .
and are shown to be in good agreement. A four- and an eigfﬁg'on discontinuity, which is obtained by mode-matching

pole dual-mode elliptic-function filter using the propose&EChmqu?S' For_th|s type of dlspont|nU|ty, the mutual inner-
E%duct integrations are analytically computed through the

structure were designed, constructed, and tested. MeaSLE _Fouri es. Th vsis is similar to 112 di
frequency responses of the filters verify the theory. essel-rourier series. 1he analysis 1S simiiar to [12] and is
briefly summarized below.

1) Discontinuity in Cylindrical RegionsThe fields in the
cylindrical regions are expanded as the summation of the
The configuration of a conductor-loaded resonator in to parallel-plate waveguide’s eigenfields in each region in
rectangular waveguide under consideration is shown in Fig.dylindrical coordinates 4, ¢,y). The transverse fields with
A conductor ring of thickness, inner radiusr;, and outer respect to the direction can be expressed as
radiusrs, supported by a dielectric rod of height, is mounted
in a rectangular waveguide. A conductor-loaded cavity cdn (0:®, %) =>_ > > {ngBg‘qEnj(p) +DZZBI§IEM(P)}

Il. ANALYSIS

be viewed as a conductor-loaded waveguide shorted at both nog=eh g

ends, as shown in Fig. 2(a). The coupling structure consisting -éffnj(p, b, y) (1a)
of two conductor-loaded cavities with a rectangular iris i

their common wall is shown in Fig. 3(a). The ganalysis; ﬁf(p,d% v) :Z Z Z{CﬁBgIH"j(p) +DZ§BIEIH"j(p)}
the structure can be obtained by cascading the generalized noaseh g

scattering matrices of the different elements. By solving for hiti (65 y) (1b)
the generalized scattering matrix of the conductor-loaded p=I,111I1 1V

rectangular waveguide, one can find the solutions of both the - - ) ) )
conductor-loaded cavity and its coupling structure. whereB¢,; and By, are the first-kind Bessel functions,
or associated Bessel functiohs, and their derivatives dfE,

(¢ = h) and'TM, (¢ = ¢) modes.B}},, and By, are the
second-kind Bessel function$, or associated Bessel functions
_ S _ _ K, and their derivatives [15E7] ., ﬁ{jfnj are the transverse
The structure of Fig. 1 is divided into two main regionsgjgenfields of[E, and TM, modes in the two parallel-plane
the cylindrical region, defined 36 < a, and the rectangular- yayeguide bounded in thg-direction, and are given in the
waveguide region, defined @s> a, |z| < a. The cylindrical Appendix.

region is further divided into three one-layer regions and onepy forcing the tangential electric and magnetic fields of the
two-layer region along the radial direction, while the Wavesylindrical regions to be continuous at= r; andp = 7,
guide region is divided into left regiom, and right region anq taking proper inner products, a matrix relating the field
wy. Modeling of the structure reduces to finding the genegpefficients in regior? can finally be obtained as

alized scattering matrices for the two key building blocks:

cylindrical discontinuities, which are obtained using radial [[ME] [MB]] [Cﬂ —0 @
mode matching, and the rectangular waveguide to cylindrical D

A. Scattering Parameters of the Conductor-Loaded
Resonator in a Rectangular Waveguide
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where [M£] and [M})] are highly sparse matrices containindd. Conductor-Loaded Rectangular Cavity
the block matrices corresponding to the inner products of the

elgenm?des with each variation at the diagonals df\// ] using the generalized scattering matrix of the conductor-loaded
and [MD]- ) o ] . resonator. The reference planes of the two-port network are
~ 2) Rectangular Waveguide to Cylindrical Region Discory,gyed distance&; and Ly from the center of the resonator.

tinuity: The fields in waveguide regions are related t0 thghort circuits are placed at these ports, as shown in Fig. 2.

fields in cylindrical regionl by the boundary condition atrhen the characteristic equation for the resonant frequency of
the artificial boundary = a. The tangential electromagnetici,q cavity can be obtained as follows:

fields in the waveguide regions at the artificial boundary can

The conductor-loaded rectangular cavity can be modeled

be expressed as det { [SF] + 1]} =0. 7)
Ei(p.dy)= ZZ{A% expT i 05 ¢ The zeros of the determinant of the matrix in (7) are the
q=e,h m g resonant frequencies of the cavity. Solving matrix equations
I Biq'equ:ryfnj pcow} (6) and (7) at each resonant fr.equency gives the f|e_ld coef-
mj ficients of the resonant mode in the waveguide region. All
.5jgtmj(p,¢,y) (3a) the other field coefficients in the cylindrical regions can be
.y 4 . calculated from the continuity equation at the boundaries. The
% % + _p COos
Hpilp: byy) = Z Z Z {Anqw' exp®Tmal €% field distribution of the resonant mode can then be computed.
g=e,h, m j
—ij{j exp””vqna"’ww} C. Slot Coupling Between Two Identical Cavities
. hia (p, 3p To compute the coupling between two identical cavities
u)t'rnj p? 7y) ( ) .. . .
‘ ‘ through an iris, properties of the symmetrical network can
Craemy (P P y) == P X (ﬁ X 8gnlj(x7y)|w2+z2=a2) be used to simplify the computation, as shown in Fig. 3.
. g T g By applying a perfect electric conductor (PEC) and a per-
=JC.ym; (%) +¢[wama’($v«y) cos ¢ fect magnetic conductor (PMC) boundary condition at the

symmetrical plane, the coupling structure can be modeled
as a conductor-loaded cavity connected with an evanescent-
(4a) mode waveguide, whose length is half the iris thickness. The

:Fei()lzrnj ($7 y) sin ¢:|

ﬁi()ztm/,(p’ b.y)=—px (ﬁ « ﬁi;lnl"($7y)|$2+22=a2) generalized scattering matrices of the two-port strucfsfé
! ‘ ! o can then be obtained using the cascading procedure, as shown
=G mi(@,Y) +¢[h§§mj(a:,y) cos ¢ in Fig. 3(b). Applying the boundary conditions at both ends

i _ of the structure, the following characteristic equations for the
Fhigzm; (%, y) sin </>} structure are obtained:
(4b) [SLI+E] [St]

det

i = w1, EANCSES ®

where the upper part of the sign in the exponential term appliebere + is used for the PEC wall at the symmetric plane,
for the fields in regionw, and the lower sign applies for thewhich gives resonant frequengy, and— for the PMC wall,
fields in regionw,. i, and ki, . are eigenmode fields which gives resonant frequeng,.

of TE. (¢ = h) and TM. (¢ = ¢) modes in the rectangular The coupling coefficient can be computed from the two
waveguidez?y,, . andh.?, - are the tangential fields @f,%, . resonant frequencief. and f,, as [6]

. wtmy wtmy
and?,; .. at the interface of the artificial boundapy= a. M f2-f2
Matching the tangential electromagnetic fields of the two k== Ty )

waveguide regions and cylindrical regidnon the imaginary

boundaryp = q, taking the cross inner products, and using the i
method described in [12] and [13], a matrix equation relating

the field coefficients of the incident and reflected waves in the”A COMPputer program has been developed to compute the
waveguide regions; anduws to the coefficients of cylindrical 'éSonant frequencies, field distributions, and coupling co-

. REsuLTS

region I can be obtained as follows: efficients of the conductor-loaded rectangular cavities. The
, field distributions of theH F1; mode of a cavity are shown
C Awt Bwt . . . . "
{DI} = [M.] {sz} + [MB][sz} (5) I Fig. 4. The fields s_atlsfy the boundary conditions at the
interface of each region, thus ensuring the correctness of

H}g results. Both electric- and magnetic-field distributions are
wn at various cross sections of the resonator. The field

distributions of the orthogonal mode with the PECzat 0

“ P P © © plane have the same shape, but are rotated through angfe.

{B, 1} - {[Sn] [512]} [A, 1} = [57] {A 1} (6) The resonant frequencies of a conductor-loaded rectangular

B [551] [552] Az cavity for different modes are computed and compared with

From (2) and (5), the desired generalized scattering mat
of the conductor-loaded resonator in a rectangular wavegu
can be obtained as follows:
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Fig. 4. Field distributions of a conductor-loaded rectangular cavity %ith= 1.2 in, b= 1.0 in, 7y = 0.0in, 72 =045 in,t =0.1in, by = 0.45 in. ()
Electric-field distribution aty = 0.8-in plane with PMC atx = 0 plane. (b) Magnetic-field distribution at = 0.8-in plane with PMC at = 0 plane. (c)
Magnetic-field distribution at = £0.6-in plane with PMC atr = 0 plane. (d) Magnetic field distribution at= +0.6-in plane with PEC at: = 0 plane.

15 . TABLE |
COMPARISON OF COMPUTED AND MEASURED RESONANT
o FREQUENCIES INGHz WiTH 2a¢ = 1.2 in, b = 1.0 in,

: 1 11 =0,79 =045in,L;, =L =061in, ¢ = 1.02
! ' HEy, | TMoi | HEn | TMa: | HEs
1 computed | 4.555 | 6.672 | 7.066 | 8.461 | 10.631

—— Square Enclosure
------ Circular Enclosure 190"

™
st
|&]
> 10} 4 measured | 4.549 | 6.631 | 7.082 | 8.478 | 10.575
§ ]
=}
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Fig. 5. Mode chart of a conductor-loaded rectangular cavity &ith= 1.2 2 6 " B
in,b=1.0in,ry =0.0,¢t=0.11in, by = 0.45 in, versus radius-. % HE 4, 1
I Y ]
J
4+ ]
the measured results in Table I, and both results are in good N | LT
agreement. Fig. 5 shows the resonant frequencies of the first 0 0.05 0.1 0.15 02
five modes in a cavity with a solid conductor plate versus Radius of the ring ( inch )

the radius of the plate. The resonant frequencies of the re t_. 6. Effect of ring of a conductor-loaded rectangular cavity with

angular cavity are also compared with that of the cylindrical, = 1.2in, 5 = 1.0 in, r, = 0.45 in, t = 0.1 in, b; = 0.45 in, on
enclosure ofp = a. It is seen that the resonant frequencyesonant frequencies of the first two modes.
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X Fig. 11. Wide-band frequency response of the test dual-mode four-pole
> A A-A elliptic-function filter.

Fig. 9. Configuration of the test dual-mode four-pole elliptic-function filter.

The coupling coefficients between two identical conductor-
of the rectangular enclosure is lower than that of cylindrichkbaded rectangular cavities through an iris with PEC and PMC
enclosure, especially for th& £'5; mode, but has the sameboundary conditions at = 0 plane are also computed and
trends for both kinds of enclosures. Fig. 6 shows the resonanmpared with the measured results (see Fig. 8). It is shown
frequencies of the cavity versus the radius of the hole in thigat strong coupling can be achieved with PECzat= 0
loading element. The hole of the conductor plate does not hgplane. Both calculated and measured couplings are in good
a strong effect on the resonant frequency of the first and sec@uteement.
modes. Fig. 7 shows the resonant frequencies of the cavityAs an application of the modeling, a four-pole elliptic-
versus the dielectric constant of the support. It is seen that floection filter with center frequency of 4.40 GHz and band-
dielectric constant of the support has a strong effect on thédth of 48 MHz is designed, constructed, and tested. The
resonant frequency of the second mod@&/p;) of the cavity. normalized input/output resistances and coupling matrix ele-
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Fig. 12. (a) Theoretical frequency responses of the eight-pole filter. (b) Configuration of the designed filter.

ments of the filter as obtained from synthesis are as follows: s;» log MAG S12 log MAG
.9 dB REF ©.
0 09799 0  —0.1095 25 2.0 ans A Teredss
09799 0 0 7875 0 V —2.8447 dB 2 4.2119 dB
| 0. . -
M=1"0" o785 0 09799 il
—0.1095 0 0.9799 0 MAR]KSER2 _2—:%_
Ry =Rp = 1.2535. (10) 1 op
The configuration of the filter is shown in Fig. 9. The tuning p 2

screws on the top and at the side of the conductors oriented at

0° and 90 to the normal field polarization in each resonator \

are used for resonant frequency tuning. The tuning screws on

the top of the conductors oriented at4&re used for obtaining \

the couplingM;, and Ms,. The vertical iris is used to obtain R AN N U "
1

M3 and the horizontal iris is used to achieve the negative V4 I

coupling M14. The relative position of the 45tuning screws A V \ \ / \
determines the sign of coupling,4. The measured frequency 4 \/ l
responses of the test filter are shown in Fig. 10. It is seen that A

the measured responses are in agreement with the theoretical V
responses. Fig. 11 is the wide-band frequency response of the CENTER 1.857500000 GHz

four-pole filter. The first spurious response which is coupled SPAN - 0.050000000 GHz

by the vertical iris fromlI'My; mode is 1.69 GHz higher thanFig. 13. Measured frequency responses of the eight-pole filter.
the center frequency of the filter.

Finally, an eight-pole elliptic-function filter for PCS baseFig. 13 shows the measured frequency responses of the filter.
station application with center frequency of 1.8575 GHZhe insertion loss of the filter at the center frequency is 0.70
and bandwidth of 15.5 MHz was designed and constructetB. The corresponding realizeg is larger than 6000.

Fig. 12 shows the theoretical frequency responses and the
configuration of the filter. The conductor-loaded resonators are
supported by low dielectric-constant material. All the irises Conductor-loaded resonators in a rectangular enclosure and
are opened at one side of the filter to simplify the structurtheir coupling structures are modeled by a rigorous mode-

IV. CONCLUSION
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